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SUMMARY

Adult hippocampal neurogenesis has been reported
to be decreased, increased, or not changed in Alz-
heimer’s disease (AD) patients and related transgenic
mouse models. These disparate findings may relate
to differences in disease stage, or the presence of
seizures, which are associated with AD and can stim-
ulate neurogenesis. In this study, we investigate a
transgenic mouse model of AD that exhibits seizures
similarly to AD patients and find that neurogenesis is
increased in early stages of disease, as spontaneous
seizures became evident, but is decreased below
control levels as seizures recur. Treatment with the
antiseizure drug levetiracetam restores neurogenesis
and improves performance in a neurogenesis-asso-
ciated spatial discrimination task. Our results sug-
gest that seizures stimulate, and later accelerate the
depletion of, the hippocampal neural stem cell pool.
These results have implications for AD as well as
any disorder accompanied by recurrent seizures,
such as epilepsy.

INTRODUCTION

Alzheimer’s disease (AD) is characterized by prominent impair-

ments in memory (Holtzman et al., 2011; Weintraub et al.,

2012). Many studies have therefore focused on the hippocam-
Cell
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pus, which is critical for memory formation and is exquisitely

vulnerable to dysfunction (Fjell et al., 2014; Leal and Yassa,

2013; Morrison and Hof, 2002). The hippocampus is also impor-

tant for mood regulation, which is also affected in AD (Kheirbek

et al., 2013; Sala et al., 2004). The amyloid precursor protein

(APP) and the amyloid beta (Ab) peptides cleaved from it play

central roles in AD (Bertram et al., 2010; Mucke and Selkoe,

2012); however, the precise mechanisms by which Ab impairs

neuronal function are unclear. One mechanism may be through

disruption of adult hippocampal neurogenesis. Ab affects

neural stem cell (NSC) dynamics in vitro (Haughey et al., 2002;

Sotthibundhu et al., 2009), and transgenic mice that produce

high levels of Ab exhibit alterations in adult hippocampal neuro-

genesis (Mu and Gage, 2011; Rodrı́guez and Verkhratsky, 2011).

Importantly, adult neurogenesis is involved in both memory and

mood, and it is altered in AD (Aimone et al., 2014; Anacker and

Hen, 2017; Christian et al., 2014; Jin et al., 2004b; Miller and

Hen, 2015; Moreno-Jiménez et al., 2019).

Neurogenesis in the hippocampal dentate gyrus (DG) con-

tinues beyond development, although to diminished levels rela-

tive to the developing brain (Bergmann et al., 2015; Knoth et al.,

2010). A number of studies have demonstrated evidence of

post-natal neurogenesis in adult humans (Boldrini et al., 2018;

Eriksson et al., 1998; Ernst et al., 2014; Kempermann et al.,

2018; Moreno-Jiménez et al., 2019; Spalding et al., 2013; but

seeSorrells et al., 2018). Although it is difficult to examine its func-

tion in humans, postnatal neurogenesis has been well studied in

rodents, which has advanced our knowledge of the cognitive and

psychiatric domains modulated by adult-born neurons. Adult-

born granule cells in the DG are important for mood regulation
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aswell as spatial discrimination, the ability to distinguish between

similar but different contexts (Aimone et al., 2011; Danielson et al.,

2016; Nakashiba et al., 2012). Spatial discrimination is impaired in

AD patients and related mouse models (Ally et al., 2013; Richetin

et al., 2015; Salmon, 2012; Wesnes et al., 2014), but the underly-

ing mechanisms remain unclear, perhaps due in part to conflict-

ing reports about how adult neurogenesis is altered in AD.

Studies have found increased, decreased, or no changes in hip-

pocampal neurogenesis in AD patients (Boekhoorn et al., 2006;

Briley et al., 2016; Jin et al., 2004b; Mu and Gage, 2011; Rodrı́-

guez and Verkhratsky, 2011). A recent study demonstrated not

only the robust presence of adult neurogenesis in older humans,

but also consistent decreases in neurogenesis in AD patients

(Moreno-Jiménez et al., 2019). Varied alterations in neurogenesis

have also been described in transgenic mice that express high

levels of Ab (Chevallier et al., 2005; Donovan et al., 2006; Hamilton

et al., 2010; Jin et al., 2004a; Krezymon et al., 2013; López-Tole-

dano and Shelanski, 2007; Rodrı́guez et al., 2008; Taniuchi et al.,

2007; Unger et al., 2016; Verret et al., 2007; Zhang et al., 2007).

These disparate results may reflect different stages of disease

progression, or the degree to which patients exhibit other symp-

toms such as seizures, which can directly alter neurogenesis (Mu

and Gage, 2011).

Indeed, in experimental models of seizures, hippocampal NSC

proliferation increases rapidly after seizure onset, consistent with

evidence that increases in neuronal activity increase proliferation

(Gray and Sundstrom, 1998; Nakagawa et al., 2000; Parent et al.,

2006; Scharfman and Gray, 2007). After severe seizures such as

status epilepticus (SE), there is also a rapid increase in prolifera-

tion of both NSCs and glia within the first hours to days, and then

an increase in newborn neurons starting about 4 days after SE.

However, in conditions in which seizures are recurrent, the

numbers of newborn neurons are typically reduced (Hattiangady

et al., 2004; Ledergerber et al., 2006).

AD patients also exhibit epileptiform activity and spontaneous

seizures that begin early in disease progression, often in the fifth

or sixth decade of life. Some of these individuals carry familial

mutations linked to AD (Hauser et al., 1986; Lozsadi and Larner,

2006; Scarmeas et al., 2009), but subclinical epileptiform activity

has also been documented in patients with no known familial

mutations (Lam et al., 2017; Vossel et al., 2013, 2016). Trans-

genic mice that express mutant human APP also have recurrent

seizures (Chin and Scharfman, 2013; Kam et al., 2016; Minkevi-

ciene et al., 2009; Palop et al., 2007). Therefore, the recurrent

seizures in AD and epilepsy may initiate an acute increase, but

subsequent reduction, in neurogenesis in the long term. One

mechanism that could explain the early increase and later reduc-

tion in neurogenesis is that some populations of NSCs have a

finite capability to produce neuronal cells, suggesting that

excessive stimulation of NSC division may exhaust the NSC

pool (Encinas et al., 2011b; Pilz et al., 2018). Recurrent seizures

can lead to an accelerated depletion of the NSC pool (Sierra

et al., 2015). However, how the NSC pool is regulated in AD

models throughout disease progression, and whether seizure

activity plays any role, is not clear. In this study, we tested the

hypothesis that the hippocampal NSC pool is prematurely ex-

hausted in a transgenic APP mouse model of AD that exhibits

spontaneous recurrent seizures (line J20, Mucke et al., 2000).
3742 Cell Reports 27, 3741–3751, June 25, 2019
RESULTS

The Rate of Adult Hippocampal Neurogenesis in APP
Mice Increases after Seizure Activity Starts and then
Decreases with Age
Pharmacologically induced seizures acutely increase neurogen-

esis in the DG (Gray and Sundstrom, 1998; Nakagawa et al.,

2000; Parent et al., 2006). However, in chronic stages of epi-

lepsy, neurogenesis is reduced below control levels (Hattian-

gady et al., 2004), which has been hypothesized to result from

the seizure-induced depletion of the NSC pool (Sierra et al.,

2015; see also Figure 1A). Because APP mice exhibit sponta-

neous seizures, we assessed whether neurogenesis follows a

similarly biphasic dynamic during disease progression. In this

line of APP mice, epileptic spikes are evident by 1 month of

age, and seizures are robust by 2 months of age (Figures

1B�1D). To test if neurogenesis is altered as seizures develop

in APP mice, we performed immunophenotyping, which iden-

tifies cell types based on cell morphology and expression of

cell-specific markers (as in Encinas and Enikolopov, 2008).

Using doublecortin (DCX) to assess immature neurons (Fig-

ure 1E), we found that relative to nontransgenic (NTG) controls,

APP mice exhibited similar numbers of immature neurons at

1 month of age, but increased numbers by 2 months of age (Fig-

ures 1F and 1G). The number of immature neurons was reduced

below NTG levels at 3, 7, and 14 months of age (Figure 1G), as

was the number of neuroblasts (Figure S1A). DCX-expressing

immature neurons also expressed PSA-NCAM and b3-tubulin,

confirming their identity (Figure S2). We also tested whether

other APP transgenic lines that exhibit seizures exhibit similar al-

terations in neurogenesis.We found that the number of immature

neurons in transgenic PS1-APP mice was increased at younger

ages and decreased at older ages, relative to NTG littermates

(Figures S3A and S3B). In addition, aged Tg2576 mice also

had fewer immature neurons relative to NTG littermates (Fig-

ure S3C). These results are similar to our findings in J20 APP

mice and support the hypothesis that seizures alter neurogene-

sis in APP mice.

Studies of seizure-induced neurogenesis in pharmacological

models of epilepsy showed that neurons born postnatally into

an epileptic hippocampus can exhibit altered morphology and

ectopic migration (Jessberger et al., 2007; Parent, 2007; Scharf-

man et al., 2000). We found that DCX-expressing immature neu-

rons in a pilocarpine mouse model of epilepsy exhibited altered

morphology with disorganized neurites as well as ectopic migra-

tion into the hilus (Figure S4A), as previously described (Myers

et al., 2013; Scharfman et al., 2000). We did not find obvious

morphological differences in DCX-expressing immature neurons

in APPmice, although we did find a small increase in the number

of ectopic granule neurons in the hilus (Figures S4A�S4C).

These results may reflect differences in seizure severity and fre-

quency, which is greater in pilocarpine-induced epilepsy than

what occurs spontaneously in APP mice.

APP Mice Exhibit Increased NSC Division Followed by
Accelerated NSC Pool Depletion
To assess whether the initial increase and subsequent decrease

in neurogenesis in APP mice corresponds to changes in NSC
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Figure 1. The Rate of Adult Hippocampal Neurogenesis in APP Mice Increases after Seizure Activity Starts and Then Decreases with Age

(A) Model illustrating how seizure activity may induce changes in neurogenesis.

(B andC) Representative electroencephalogram (EEG) traces fromNTGand APPmice at 1 and 2months of age, with epileptiform spikes at 1month of age (B) and

a seizure at 2 months of age (C) in APP mice. Electrodes were in left and right frontal cortices (LFC and RFC), hippocampus (HIP), and parietal cortex (PC). Scale

bars, 1 mV, 10 s.

(D) The number of epileptic spikes per hour in NTG or APP mice at 1, 2, and 4�6 months of age (n = 3�5 mice per genotype and age).

(E) Immunophenotyping of immature neurons (ImN) and neuroblasts (Nb) by examining morphology of cells that express doublecortin (DCX). Scale bar, 20mm.

(F) DCX staining in NTG and APP mice at 1, 2, and 7 months of age. Scale bar, 100 mm.

(G) DCX expression at 1 month of age (n = 9�12 mice per genotype) and number of DCX+ ImNs at 2 (n = 6 mice per genotype), 3 (n = 8 mice per genotype),

7 (n = 9�10 mice per genotype), and 14 (n = 11�12 mice per genotype) months of age, normalized to NTG at each time point.

*p < 0.05; **p < 0.01; ***p < 0.001; two-tailed unpaired Student’s t test comparing means between NTG and APP mice at each age. Values indicate mean ± SEM.

See also Figures S1–S4 and Tables S1 and S2.
numbers, we quantified NSCs at different ages. In wild-type

mice, the number of NSCs declines with aging (Encinas et al.,

2011b), but whether this process is the same in APP mice was

not clear. We immunophenotyped nestin-positive cells with

radial glia-like morphology (Figure 2A; as in Encinas and Eniko-

lopov, 2008) and found that APP and NTG mice had similar

numbers of NSCs at 1 month of age, and both genotypes ex-

hibited age-dependent decreases in NSC numbers (Figures 2B

and 2C). However, compared to NTG mice, APP mice exhibited

an accelerated loss of NSCs, such that by 2 months of age and

onward, there were fewer total NSCs in APP mice than in NTG

controls (Figures 2B and 2C). NSCs were similarly reduced in

PS1-APP and Tg2576 mice (Figures S3D�S3F).

To test if the accelerated loss of NSCs in APP mice could be

due to excessive cell division, leading to a depletion of the

NSC pool, we administered the thymidine analog BrdU as a

marker of cell division. We assessed the number of BrdU+

NSCs in APP and NTG mice at different ages (Figures 2D�2F).

We found an initial increase in the numbers of dividing NSCs in

APP mice at 1 month of age (Figures 2E and 2F), no change at

2 months of age, and a reduction by 3 months of age (Figures

2E and 2F; see Figures S1B and S1C for ANPs and dividing

ANPs). We noted that at 2 months of age, APP mice had similar

levels of dividing NSCs, but fewer total NSCs than NTG mice.
Therefore, the rate of division relative to NTG mice was propor-

tionally increased at that timepoint (Figure 2F inset; see Figure S5

for rates of division at other time points). We obtained similar re-

sults using Ki67 as an independent marker of cell division (Fig-

ures 2G�2I).

APP Mice Have a Higher Fraction of NSCs Engaged in
Consecutive Divisions Early in Life than NTG Mice Do
When NSCs divide, they can divide consecutively 3 or 4 times

to produce neuronal precursors before exiting the stem cell

pool (Encinas et al., 2011b, 2006). If this process is altered in

APP mice such that NSCs do not divide consecutively, the

accelerated loss of NSCs in APP mice might be due to funda-

mental differences in the process of neurogenesis, not due to

accelerated usage. To test this possibility, we administered

BrdU and EdU 22 h apart and collected brains 2 h after EdU in-

jection. NSCs dividing on day 1 of the injection with BrdU, but

not on day 2 with EdU, should only incorporate BrdU labeling.

NSCs dividing only on day 2 should only incorporate EdU label-

ing. NSCs that divided on day 1 and then immediately re-

entered the cell cycle to divide again on day 2 (‘‘consecutively

dividing’’) should incorporate both BrdU and EdU (Figure 3A; as

in Encinas et al., 2011b). Both APP and NTG mice exhibited

age-dependent decreases in numbers of consecutively dividing
Cell Reports 27, 3741–3751, June 25, 2019 3743
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Figure 2. APP Mice Exhibit Increased NSC Division Followed by Accelerated NSC Pool Depletion

(A) Immunophenotyping of NSCs and neuronal precursors called amplifying neural progenitors (ANP) that express nestin. Scale bar, 20mm.

(B) Nestin immunostaining in NTG and APP mice at 1, 2, and 6 to 7 months of age. Scale bar, 100 mm.

(C) The number of NSCs in NTG and APPmice at 1 (n = 10�11mice per genotype), 2 (n = 14mice per genotype), 3 (n = 8mice per genotype), 6 (n = 9�10mice per

genotype), and 14 (n = 11�12 mice per genotype) months of age. Cell counts were normalized to the average of 1-month-old NTG mice.

(D) Immunophenotyping of dividing NSCs based on nestin expression and presence of BrdU. Scale bar, 20 mm.

(E) Nestin and BrdU staining in NTG and APP mice at 1, 2, and 6�7 months of age. Scale bar, 100 mm.

(F) The number of BrdU+ dividing NSCs in NTG and APP mice at 1 (n = 9�10 mice per genotype), 2 (n = 8 mice per genotype), 3 (n = 8 mice per genotype),

6 (n = 8 mice per genotype), and 14 (n = 11�12 mice per genotype) months of age. Cell counts were normalized to the average of 1-month-old NTG mice. Inset

shows the proportion of dividing NSCs to total NSCs at the 2-month time point.

(G) Immunophenotyping of dividing NSCs based on nestin expression and presence of Ki67. Scale bar, 20 mm.

(H) Nestin and Ki67 staining in NTG and APP mice at 2 months of age. Scale bar, 50 mm.

(I) The total number of Ki67+ dividing NSCs in 2-month-old NTG and APP mice. Cell counts were normalized to the average of NTG mice (left; n = 8 mice per

genotype). The percentage of dividing NSCs was calculated as the number of Ki67+ Nestin+ dividing NSCs divided by the total number of NSCs in NTG and APP

mice (right).

*p < 0.05; **p < 0.01; ***p < 0.001; two-tailed unpaired Student’s t test comparing means between NTG and APP mice at each age. Values indicate mean ± SEM.

See also Figures S1, S3, S5, and S6 and Tables S1 and S2.
NSCs (Figures 3B and 3C). However, at 3 weeks of age, APP

mice had more consecutively dividing NSCs compared to

NTG mice, but fewer than NTG mice by 6 months of age (Fig-

ures 3B and 3C). These results were similar to the pattern

found with just BrdU labeling (Figure 2F) and indicate that
3744 Cell Reports 27, 3741–3751, June 25, 2019
NSCs enter consecutive cycles of cell division in both APP

and NTG mice. These data are compatible with the notion

that the fundamental process of NSC division is not grossly

altered in APP mice, but rather the rate at which they are

engaged to enter the cell cycle.
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(A) Administration of BrdU and EdU 22 h apart captures NSCs that were
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days 1 and 2 (BrdU+ EdU+ NSCs; ‘‘consecutively dividing NSCs’’). Scale bar,

20 mm.

(B and C) Number of consecutively dividing NSCs at 3 weeks (n = 6 mice per

genotype) and at 2 (n = 6�8 mice per genotype), 6 (n = 6�8 mice per

genotype), and 12 (n = 5�8 mice per genotype) months of age, normalized to

the average of the NTG mice at each time point (B) or 3-week-old NTG

mice (C).

*p < 0.05; **p < 0.01; two-tailed unpaired Student’s t test comparing means

between NTG and APP mice at each age. Values indicate mean ± SEM. See

also Figure S6 and Tables S1 and S2.
In support of this notion, when we challenged 8�10-month-

old APP and NTG mice with a single injection of kainic acid

(15mg/kg), we found that although there aremany fewer remain-

ing NSCs in APPmice relative to NTGmice at this age, the kainic

acid induced a proportionally similar increase in NSC division

(Figure S6). This result suggests that the capacity of remaining

NSCs to divide is unchanged in APP mice despite the acceler-

ated depletion of the NSC pool.

Chronic Levetiracetam Treatment Normalizes
Neurogenesis in APP Mice
One possible mechanism for the alterations in neurogenesis in

APP mice is that the seizure activity that occurs early in disease

progression aberrantly stimulates NSC division and accelerates

depletion of the NSC pool (as in Figure 1A). In APP mice at

1 month of age, seizures are not obvious, but bursts of

seizure-associated activity called interictal spikes or epileptiform

activity do occur (see Figures 1B and 1D). By 2 months of age,

APP mice exhibit robust seizures (see Figures 1C and 1D).

To test if early seizure activity plays a causal role, we used the

antiseizure drug levetiracetam (LEV), which effectively reduces

spikes and seizures in APP mice (Corbett et al., 2017; Sanchez

et al., 2012).
We previously found that a single injection of LEV (75 mg/kg)

reduces epileptiform spikes in APP mice for up to 7 h and that

2 weeks of LEV treatment suppresses seizures (Corbett et al.,

2017). We therefore treated 1.5-month-old APP and NTG mice

with either LEV or saline (as a control) for 2 weeks. At this age,

at which treatment was initiated, epileptiform spikes have begun

in APP mice, but the number of NSCs was not yet altered (see

Figures 1E�1G and 2A�2C).

Mice were sacrificed at the end of the 2-week treatment, when

they were 2 months of age. The LEV efficacy was assessed by

verifying that the expression of a seizure-induced transcription

factor was reduced (Figure S7A; see Corbett et al., 2017). Similar

to the naive APPmice described above, saline-treated APPmice

had an increased proportion of dividing NSCs at 2 months of

age, compared to saline-treated NTGmice (Figure 4A). However,

this increase was prevented by the LEV treatment (Figure 4A). To

test if the reduction in NSC division in the LEV-treated APP

mice was sufficient to preserve the NSC pool, we assessed

the total numbers of NSCs after LEV treatment. Saline-treated

APP mice had fewer NSCs than NTG mice, as expected, but

there was no difference in total NSCs between the LEV-treated

APP and NTG mice (Figure 4B), suggesting a preservation of

the NSC pool. These results demonstrate that chronic LEV treat-

ment prevents the accelerated loss of NSCs in APP mice and

normalizes the NSC pool. To assess whether LEV treatment

also restored neurogenesis, we quantified DCX expression. At

2 months of age, saline-treated APP mice exhibited increased

levels of DCX expression, compared to saline-treated NTG

mice; this increase was prevented by the LEV treatment (Fig-

ure 4C). Taken together, these results suggest that reducing

seizure activity in APP mice early in the disease progression

can prevent or delay alterations in adult neurogenesis.

To test if the alterations in neurogenesis in APP mice might

also be influenced by cell-autonomous processes in the NSCs,

we prepared neurospheres from hippocampi of NTG and APP

mice. NSCs from these neurospheres exhibited comparable

rates of division from both NTG or APP mice (Figure S8). These

results indicate that the alterations in neurogenesis and NSC

dynamics in APP mice are unlikely to be due to cell-autonomous

effects and suggest that the increases in NSCdivision early in the

disease in APP mice was more likely due to circuit or network

level factors, such as seizure activity.

Chronic LEV Treatment Improves Spatial Discrimination
in APP Mice
Adult-born hippocampal neurons are critical for spatial discrim-

ination (Aimone et al., 2011; Sahay et al., 2011). To determine

whether spatial discrimination is impaired in APP mice—and, if

so, whether restoring neurogenesis with LEV is sufficient to

improve behavior—we used a spatial discrimination task modi-

fied from the object-location memory test (You et al., 2017).

This spatial discrimination task assesses the ability of mice to

distinguish incremental distances in object displacement (Fig-

ure 5A), which is dependent on the DG and contributes to the

ability to discriminate between contexts (Danielson et al., 2016;

Gonçalves et al., 2016).

We examined mice at 3�3.5 months of age, when the level of

neurogenesis in APP mice first becomes markedly reduced
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Figure 4. Chronic Levetiracetam Treatment Normalizes Neuro-

genesis in APP Mice

(A) After 2 weeks of treatment with saline or levetiracetam (LEV; 75 mg/kg),

2-month-old NTG and APP mice (n = 9�11 mice per genotype and treatment)

were sacrificed, and the percentage of Ki67+ Nestin+ dividing NSCs was

quantified. Two-way ANOVA: genotype (p < 0.01), treatment (p < 0.05). Scale

bar, 100 mm.

(B) The total number of Nestin+ NSCs in NTG and APPmice treated with saline

or LEV. Two-way ANOVA: genotype (p < 0.05), treatment and genotype

interaction (p < 0.05). Scale bar, 100 mm.

(C) DCX expression in NTG and APPmice treated with saline or LEV. Two-way

ANOVA: treatment (p < 0.0001), treatment and genotype interaction (p < 0.05).

Scale bar, 100 mm.

*p < 0.05; **p < 0.01; ***p < 0.001; Holm�Sidak post hoc test. Values indicate

mean ± SEM. See also Figures S7 and S8 and Tables S1 and S2.
compared to NTG controls (see Figure 1G). NTG mice were

unable to discriminate a very short displacement distance (to

position 1), as they spent roughly equal time exploring the dis-

placed and nondisplaced objects. (Figure 5B). However, NTG
3746 Cell Reports 27, 3741–3751, June 25, 2019
mice spent more time with the displaced object when it was

displaced to positions 2, 3, and 4, suggesting that they were

able to discriminate those displacement distances. APP mice

did not spend more time with the displaced object until it was

displaced to position 3 (Figure 5B), indicating that a greater

displacement is necessary for APPmice to discriminate changes

in distance. Thus, the displacement distance to position 2 high-

lighted a key difference in discrimination ability between the NTG

and APP mice. Indeed, the NTG mice spent more time exploring

the displaced object at position 2 than did the APPmice (see Fig-

ures S9A and S9B).

To test if the LEV-induced restoration of neurogenesis dy-

namics in APP mice also improved their spatial discrimination

ability, NTG and APP mice were treated with LEV or saline for

4 weeks via Alzet micro-osmotic pumps prior to spatial discrim-

ination testing. This method of LEV administration effectively

reduces epileptiform activity in APP mice (Figure S7; see also

Sanchez et al., 2012) and reduced the expression of a seizure-

induced transcription factor in the current study (Figures

S7B�S7D). We implanted the micro-osmotic pumps into mice

at just over 2 months of age and tested them at 3 months of

age. Both saline- and LEV-treated NTG mice spent more time

with the displaced object at position 2, whereas saline-treated

APP mice did not, as expected (Figure 5C). Notably, the APP

mice treated with LEV spent more time with the displaced object

at position 2, indicating an improved spatial discrimination ability

(Figure 5C). We noted that the time spent with the displaced ob-

ject in the testing phase was slightly less in LEV-treated NTG

mice than in saline-treated NTG mice (Figure 5C), so we calcu-

lated the spatial discrimination index for each group of mice

and compared the magnitude of discrimination between groups.

The LEV treatment did not affect the magnitude of spatial

discrimination in the NTG mice, but it markedly improved the

spatial discrimination of the APP mice (Figures S9C and S9D).

These results do not prove that the improvement in spatial

discrimination was due to the restoration of neurogenesis,

but together they demonstrate that treatment of APP mice with

an antiseizure drug restores neurogenesis dynamics and im-

proves spatial discrimination.

DISCUSSION

We have shown that the hippocampal NSC pool in APP mice

undergoes increased proliferation early in the disease progres-

sion, followed by accelerated age-dependent depletion. The

early increase is associated with aberrant epileptiform activity,

and the depletion is associated with the development of recur-

rent seizures.

This biphasic pattern of neurogenesis may help explain the

divergent reports of the direction of change in neurogenesis in

AD. Studies that found increased neurogenesis in AD generally

investigated earlier stages of the disease progression, whereas

those that found reduced neurogenesis generally examined later

stages (Chevallier et al., 2005; Donovan et al., 2006; Hamilton

et al., 2010; Jin et al., 2004a; Krezymon et al., 2013; López-Tol-

edano and Shelanski, 2007; Rodrı́guez et al., 2008; Taniuchi

et al., 2007; Unger et al., 2016; Verret et al., 2007; Zhang et al.,

2007). A similar biphasic change in neurogenesis was previously
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(A) Spatial discrimination task. Mice were trained with two identical objects
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test phase (p < 0.0001), treatment and test phase interaction (p < 0.001).
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found in the line of APP mice used in our studies, although the

mechanism underlying such changes was not clear (López-Tol-

edano and Shelanski, 2007). Notably, a recent study demon-

strated that adult neurogenesis occurs throughout even the ninth

decade of life in humans, and the extent of neurogenesis is

diminished in individuals with AD (Moreno-Jiménez et al.,

2019). Although the presence of seizures was not assessed in

that study, it has been found in AD patients, as well as in

numerous mouse models of AD as described previously, sug-

gesting that alterations in neurogenesis described in those pa-

tients and models could potentially have been similarly affected

by recurrent seizures. Indeed, non-monotonic alterations in neu-

rogenesis with aging have been described in studies of aging

mice, which supports the hypothesis that the neurogenic niche

responds to changes in the local environment over time (Aposto-

lopoulou et al., 2017).

Seizures appear to be intimately linked to alterations in neuro-

genesis and cognitive function both in AD and epilepsy. AD and

epilepsy patients share many cognitive and psychiatric symp-

toms, pointing to possible common underlying mechanisms

(Chin and Scharfman, 2013). Some of these overlapping symp-

toms, such as impairments in spatial discrimination and mood

regulation, have both been associated with aberrant postnatal

neurogenesis. Impairments in cognition and mood regulation

are also observed in other diseases and disorders in which sei-

zures have been reported, such as Parkinson’s disease (Cooney

and Stacy, 2016; Gruntz et al., 2018), Down syndrome (Menén-

dez, 2005), schizophrenia (Cascella et al., 2009), Rett syndrome

(Chahrour and Zoghbi, 2007; Dolce et al., 2013), and others. It is

therefore possible that any condition associated with recurrent

seizures may similarly be affected by premature depletion of

the hippocampal NSC pool, thus giving rise to similar cognitive

and psychiatric symptoms.

Strategies that alter NSCs’ fates and prevent them from exiting

the pool after division may help preserve the NSC pool and func-

tion. To develop such strategies, it is necessary to understand

what regulates NSCs as they go through the stages of division

as well as entry and exit from the cell cycle. Some clues already

exist. Using a combination of Nestin and Gli1 reporter lines,

Encinas et al. (2011b) found that a population of NSCs did not

self-renew, but instead underwent a few rapid asymmetric

divisions to produce ANPs before terminally differentiating into

astrocytes. A separate study using in vivo clonal analysis with

Nestin-CreERT2 mice with Z-EG reporter to track NSCs did find

evidence of self-renewal, however, underscoring the heteroge-

neity of NSCs in the DG (Bonaguidi et al., 2012, 2016, 2011).

These studies focused on wild-type mice; it is not clear if these

processes are regulated similarly in the context of disease. A

recent study using an intrahippocampal kainic acid rodentmodel

of temporal lobe epilepsy found that NSCs divide symmetrically

before both mother and daughter cells convert into astrocytes,

suggesting that the process can differ in at least some disease

conditions (Sierra et al., 2015). Notably, using a weaker kainic

acid stimulus that induces epileptiform spikes but not seizures,

the authors did not find an increase in NSC conversion into

astrocytes. Thus, heterogeneity exists not only in the ability of

NSCs to renew themselves, but also in their fate after activation

in different conditions. Alterations in long-range GABA-ergic
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signaling may also contribute to varying effects on NSCs in

different conditions, as impairments lead to increased NSC acti-

vation and subsequent depletion (Bao et al., 2017; Song et al.,

2012). Additional therapeutic opportunities may lie in inducing

remaining NSCs to self-renew and replenish the pool. Targeting

the transcription factor REST may be beneficial, as its loss of

function in induced pluripotent stem cells (iPSCs) derived from

AD patients altered neural differentiation and depletion of

NSCs (Meyer et al., 2019).

Our studies indicate that in APP mice, aberrant network activ-

ity is a primary driver of alterations in neurogenesis dynamics.

Reducing epileptiform activity in APPmice normalized both neu-

rogenesis and an associated behavior, whereas isolation and

growth of NSCs from APP mice in vitro did not reveal altered dy-

namics in intrinsic cell division. These results do not preclude the

possibility that APP or its cleavage products might yet have cell-

autonomous effects on neurogenic processes, as reported (Laz-

arov and Demars, 2012). However, the robust effect of seizures

on NSC division may overshadow other factors, or these factors

may have differential impacts on NSC division, differentiation, or

neuronal maturation.

Neurogenesis can alsomodulate network excitability. Newborn

neurons promote inhibition in local hippocampal circuitry and

may protect against neuronal injury after severe seizures (Drew

et al., 2016; Iyengar et al., 2015; Jain et al., 2019). Thus, reduced

neurogenesis in later stages of disease may exacerbate the

excitation�inhibition imbalance. Seizures can also induce abnor-

malities in newborn neurons, such as mossy fiber sprouting,

ectopic neuronal migration, and hilar basal dendrites, which

may disrupt the circuitry and further promote seizures (Hester

and Danzer, 2013; Jessberger et al., 2007). Additional studies

are required to assess whether or how aberrant neurogenesis

affects epileptogenesis in the APP mice in our study.

Neurogenesis is a multi-stage process that is influenced by

many variables. Stimuli that affect neurogenesis may target

distinct aspects of this process (Encinas et al., 2011a; Enikolo-

pov et al., 2015; Lugert et al., 2010; Song et al., 2016). Deep brain

stimulation in the anterior thalamic nucleus, physical exercise,

and fluoxetine (Prozac) increase neurogenesis by stimulating

the division of ANPs to increase neurogenic output (Encinas

et al., 2011a, 2006), which is speculated to be how they exert

their beneficial effects on cognition and mood. However, sei-

zures and traumatic brain injuries also acutely increase neuro-

genesis but have negative long-term effects on function, which

may be related to the fact that excitotoxic stimuli appear to acti-

vate the normally quiescent NSCs to divide (Gao et al., 2009; Lu-

gert et al., 2010). Likewise, an ischemic brain injury, which initially

induces a surge in NSC division in the subgranular zone (SGZ),

ultimately leads to the long-term impairment of proliferation

and neurogenesis (Lin et al., 2018). Our data suggest that a detri-

mental consequence of aberrantly activating quiescent NSCs is

the premature exhaustion of a finite NSC pool. Treatment with

antiepileptic drugs effectively controls seizures and restores

the dynamics of neurogenesis, but is not necessarily optimal

for long-term use due to possible adverse effects (Eddy et al.,

2011; Schoenberg et al., 2017). Thus, therapeutic strategies to

enhance neurogenesis may hold great promise for the treatment

of cognitive and/or mood disorders, but care must be taken to
3748 Cell Reports 27, 3741–3751, June 25, 2019
stimulate the right cell types to increase neurogenic output but

not deplete the NSC pool.
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C.A., Kempermann, G., Taylor, V., and Giachino, C. (2010). Quiescent and

active hippocampal neural stem cells with distinct morphologies respond

selectively to physiological and pathological stimuli and aging. Cell Stem

Cell. 6, 445–456.

Menéndez, M. (2005). Down syndrome, Alzheimer’s disease and seizures.

Brain Dev. 27, 246–252.

Meyer, K., Feldman, H.M., Lu, T., Drake, D., Lim, E.T., Ling, K.H., Bishop, N.A.,

Pan, Y., Seo, J., Lin, Y.T., et al. (2019). REST and Neural Gene Network

Dysregulation in iPSC Models of Alzheimer’s Disease. Cell Rep. 26, 1112–

1127.e1119.

Miller, B.R., and Hen, R. (2015). The current state of the neurogenic theory of

depression and anxiety. Curr. Opin. Neurobiol. 30, 51–58.

Minkeviciene, R., Rheims, S., Dobszay, M.B., Zilberter, M., Hartikainen, J.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-doublecortin Cell Signaling Technologies Cat# 4604; RRID: AB_561007

Mouse anti-nestin Millipore-Sigma Cat# MAB353; RRID: AB_94911

Chicken anti-nestin Novus Biologicals Cat# NB100-1604; RRID: AB_2282642

Rat anti-BrdU Accurate Chemical Cat# OBT0030G; RRID: AB_609567

Mouse anti-BrdU Sigma-Aldrich Cat# B8434; RRID: AB_476811

Rabbit anti-Ki67 ThermoFisher Scientific Cat# RM-9106-S1; RRID: AB_149792

Mouse anti-PSA-NCAM Millipore-Sigma Cat# MAB5324; RRID: AB_95211

Rabbit anti-b3-tubulin Cell Signaling Technologies Cat#: 5568; RRID: AB_10694505

Mouse anti-Prox1 PhosphoSolutions Cat#: 1685-Prox1; RRID: AB_2492217

Rabbit anti-DFosB Cell Signaling Technologies Cat#: 14695; RRID: AB_2798577

Chemicals, Peptides, and Recombinant Proteins

5-bromo-20-deoxyuridine (BrdU) Sigma-Aldrich Cat# B5002

5-ethynyl-20-deoxyuridine (EdU) Invitrogen Cat# A10044

Kainic acid Sigma-Aldrich Cat# K0250-10MG

3,3-diaminobenzidine (DAB) Sigma-Aldrich Cat# D5905-50TAB

Levetiracetam Sequoia Research Products Cat# SRP013811

Papain Roche Cat# 10108014001

DNaseI Roche Cat# 04716728001

L-cystein Sigma-Aldrich Cat# C7352

bFGF R&D Systems Cat# P15655

EGF R&D Systems Cat# 2028-EG

Heparin Sodium Sigma-Aldrich Cat# H4784

N2 supplement Invitrogen Cat# 17502048

B27 supplement Invitrogen Cat# 17504044

Geltrex Invitrogen Cat# A1413302

Critical Commercial Assays

Click-iT EdU Alexa Fluor 647 Imaging Kit Invitrogen Cat# C10340

Experimental Models: Organisms/Strains

B6.Cg-Zbtb20Tg(PDGFB-APPSwInd)20Lms/

2Mmjax (J20)

The Jackson Laboratory MMRRC stock #34836

Software and Algorithms

Prism 6 GraphPad https://www.graphpad.com/scientific-software/prism/;

RRID: SCR_002798

MetaMorph software Molecular Devices https://www.moleculardevices.com/

systems/metamorph-research-imaging/

metamorph-microscopy-automation-

and-image-analysis-software; RRID:SCR_002368

ZEN software Zeiss Microscope https://www.zeiss.com/microscopy/int/products/

microscope-software/zen.html; RRID: SCR_013672

FIJI (ImageJ) NIH RRID: SCR_002285

(Continued on next page)
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Adobe Illustrator CC Adobe http://www.adobe.com/products/illustrator.html;

RRID: SCR_010279

Adobe Photoshop CC Adobe https://www.adobe.com/products/photoshop.html;

RRID: SCR_014199

Other

Micro-osmotic pump Alzet Osmotic Pumps Model 1004
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jeannie

Chin (Jeannie.Chin@bcm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Heterozygous transgenic mice (line J20) expressing human amyloid precursor protein (APP) carrying Swedish (K670N, M671L) and

Indiana (V717F) familial AD (FAD) mutations (hAPP770 numbering) were used in this study (Mucke et al., 2000). Transgene expression

in this line is directed by the platelet-derived growth factor b chain promoter. This line has been crossed for > 10 generations onto a

C57BL/6J background using nontransgenic (NTG) C57BL/6J mice from The Jackson Laboratory (Bar Harbor, ME). APP mice are

bred, maintained, and analyzed as heterozygous transgenic mice, and age-matched NTG littermates from the same line are used

as controls. Male and female mice between the ages of 3 weeks old to 14 months old were used; see Figure Legends for the specific

ages used in each figure. Mice are housed in group-housing with ad libitum access to food and water, and maintained on a regular

12/12 light/dark cycle. No specific method of randomization was used, but mice were semirandomly assigned to experimental

groups on the basis of birth order after balancing for age, sex, and genotype. No sex differences were observed. Experiments

were performed by investigators who were blinded to the genotype and treatment of the mice. For harvesting of brains, mice

were deeply anesthetized and flush-perfused transcardially with phosphate-buffered saline. Brains were post-fixed in 4% phos-

phate-buffered paraformaldehyde. All experiments were approved by the Institutional Animal Care and Use Committee of Thomas

Jefferson University and Baylor College of Medicine.

METHOD DETAILS

Immunohistochemistry
Preparation of brains and brain sections from line J20 mice was performed as previously described (Corbett et al., 2017; You et al.,

2017). Immunohistochemistry was performed on brain sections from line J20, as well as on brain sections from PSAPP mice and

Tg2576 mice as previously described. PSAPP mice (Holcomb et al., 1998) express hAPP with the Swedish mutation and preseni-

lin-1 with FAD mutation M146L, whereas Tg2576 mice (Hsiao et al., 1996) express human APP (hAPP) carrying the Swedish FAD

mutation. Fixed brains were cryoprotected in 30% sucrose in phosphate-buffered saline, and coronal sections (30 mm) were cut

on a sliding microtome (Microm). Sections were distributed into ten subseries, each containing every tenth section throughout the

rostral-caudal extent of the brain. Each immunostain was performed on one full subseries of sections. For avidin-biotin/immunoper-

oxidase immunohistochemistry, sections were immunostained using mouse-anti-nestin (Millipore) or rabbit-anti-doublecortin (Cell

Signaling) primary antibodies followed by biotinylated donkey anti-mouse or goat anti-rabbit secondary antibodies (Vector Labora-

tories). Diaminobenzidine was used as the chromagen. For immunofluorescence, goat anti-mouse secondary antibody (Jackson)

was used. Immunoreactive neurons in the subgranular zone of the hippocampus were counted in every tenth coronal section

throughout the rostral-caudal extent of the hippocampus and summed by an experimenter blinded to genotype and treatment. Neu-

ral stem cells, amplifying neural progenitors, neuroblasts, and immature neurons were identified by immunophenotyping on the basis

of expression of nestin or doublecortin, and on morphology, following criteria previously published (Encinas and Enikolopov, 2008;

Encinas et al., 2011b). For only the 1 month time point in Figures 1G, and 4C, DCX expression was assessed by taking the sum of the

percent area of the subgranular zone and granule cell layer that was covered by a predesignated optical density threshold of DCX

staining (modified from Jain et al., 2019). Data are shown normalized to control groups to illustrate genotype and/or treatment-spe-

cific differences; raw values are listed in Table S1. DFosB immunoreactivity quantification was performed by assessing the mean

pixel intensity using ImageJ software. DFosB immunoreactivity was calculated as the ratio of the intensity of the granule cell layer

and the stratum radiatum.
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BrdU and EdU labeling
For neurogenesis time course experiments, BrdU (150 mg/kg, Sigma, St. Louis, MO) was dissolved in saline and administered twice

intraperitoneally with injections spaced 2 hours apart. Mice were sacrificed 2 hours after the last BrdU injection. For levetiracetam

treatment experiments, BrdU (100 mg/kg) was administered intraperitoneally on the final day of levetiracetam treatment. For kainic

acid induction of neurogenesis experiments, BrdU (100 mg/kg) was administered intraperitoneally once per day for 7 days following

treatment with kainic acid. Mice were sacrificed 24 hours after the last BrdU injection. Brain sections were stained with rat-anti-BrdU

antibody (Accurate Chemical) followed by donkey-anti-rat secondary antibody conjugated to AlexaFluor-594 (Invitrogen). Prolong

Gold antifademountingmediumwith DAPI (Invitrogen) was used to allow visualization of nuclei. Labeling was visualizedwith epifluor-

escence microscopy. BrdU/nestin-positive cells in the subgranular zone of the hippocampus were counted in every tenth coronal

section throughout the rostral-caudal extent of the hippocampus and summed by an experimenter blinded to genotype.

For double-labeling of BrdU and EdU, BrdU was first injected as described above (100mg/kg), and EdU (82mg/kg, Invitrogen) was

dissolved in saline and administered intraperitoneally 22 hours later. Mice were sacrificed 2 hours after the EdU injection. BrdU and

EdUwere visualized with mouse anti-BrdU (Sigma), followed by goat anti-mouse Rhodamine (Jackson), and Click-iT EdU AlexaFluor

647 Imaging Kit (Invitrogen), respectively.

Neurosphere Experiments
Neurosphere experiments were performed as previously described (Bennett et al., 2009). APPmicewere sacrificed at P3 or at P30 by

decapitation. Both hippocampi from each mouse were dissected in cold PBS and incubated at 37�C for 10 minutes in 1ml enzyme

(1mg/ml Papain, Roche and 1mg/ml DNase I, Roche). The hippocampi were then dissociated in freshmedium centrifuged at 200 g, at

room temperature, for 5minutes. The pellet was re-suspended into 2ml medium, filtered through a 70um cell strainer into 6-well ultra-

low attachment plate. Cells were cultured in 3 mL complete medium containing 1xN2 (Life Technologies), 1xB27 (Life Technologies),

0.36U/ml Heparin (Sigma), 20ng/ml bFGF (R&D Systems) and 20ng/ml EGF (R&D Systems) at 37�C. The cell density was 2-6x105 per

well. Cells were passaged every 5-6 days a total of four times before BrdU incorporation.

For BrdU incorporation, neurospheres were dissociated into single cells and plated into 24-well plate pre-coated with Geltrex

(Life Technology) at 2-5x105 cells per well. The cells were kept in complete medium containing 2 uM BrdU (Sigma) for 24 hours.

The cells were then fixed with 4% paraformaldehyde in PBS for 30min at 4�C and then treated with 2N HCl for 10 minutes

at room temperature. They were then neutralized with sodium tetraborate and incubated with primary antibodies against BrdU

(Accurate Chemical) and nestin (Millipore) overnight at 4�C. The cells were then incubated with Alexa Fluor 594-conjugated anti-

rat IgG (Molecular Probe) and FITC-conjugated anti-mouse IgG (Jackson Immune) at room temperature, as well as with Hoechst

33342 to stain nuclei. Pictures were taken from five random fields per well. BrdU-positive cells and total cells were counted by an

experimenter blinded to genotype.

EEG Recordings
Mice were stereotaxically implanted with a six-electrode array headcap for EEGmonitoring. Teflon-coated silver wire (0.005 in diam-

eter) attached to a 6-pin Delran pedestal (Plastics One) was wrapped around screws implanted bilaterally into the subdural space

over frontal and temporal cortices (fromBregma:1.0mmA-P, 1.5mmM-L;�2.2mmA-P, 2mmM-L) alongwith a hippocampal depth

electrode (�2.2 mmA-P, 2 mmM-L,1.8 mm from brain surface (DV)). All implants in 1 month old mice were depth electrodes. Ground

and reference electrodes were implanted directly behind Lambda on either side of the midline. Mice were allowed to recover for at

least 4 days before recordings were conducted. EEG recordings were performed in the home cage of the mice on at least two

different days for a minimum of 8 hours per trial using a Stellate Harmonie acquisition system (version 7.0a, Natus Medical, Pleas-

onton, CA) with a sampling rate of 2000 Hz for data acquisition. Native Stellate and Lab Chart Pro (AD Instruments Inc.) software

were used for EEG signal processing and spike count analyses.

Pharmacological Treatments
For assessment of the effect of levetiracetam on neurogenesis, levetiracetam (Sequoia Research Products, Pangbourne, United

Kingdom) was dissolved in saline and injected intraperitoneally at a dose of 75 mg/kg, 3 times per day for 2 weeks. Control groups

were administered with the equivalent volume of saline. Two APP mice that received levetiracetam treatment were observed still

having seizures, and were excluded from analysis. For assessment of the effect of levetiracetam on spatial discrimination behavior,

levetiracetam was delivered via Alzet micro-osmotic pumps (model 1004) at a dose of 75 mg/kg/day. Micro-osmotic pumps were

filled with saline or levetiracetam per manufacturer’s instructions, and primed for 2 days prior to implantation subcutaneously into

the intrascapular region. Model 1004 micro-osmotic pumps delivered fluid at a rate of 0.11 mL/hr for 28 days.

For kainic acid seizures, kainic acid (Sigma) was dissolved in saline and injected intraperitoneally at a dose of 15 mg/kg. Control

groups were administered with the equivalent volume of saline. Seizures were behaviorally monitored and scored for the first two

hours post injection.
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Spatial Discrimination Task
The experimental design was based on previously published protocols (Wimmer et al., 2012; You et al., 2017). The experimental

apparatus consisted of an empty mouse housing cage placed within a three-sided white enclosure, directly touching one side. To

provide visual cues for spatial orientation, the back wall of the enclosure was striped with black tape, the side wall adjacent to the

cage had an A4-sized picture taped to it, and a small box was placed to the left of the mouse cage. Two 25 mL Erlenmeyer flasks

were placed equidistant to the two corners of the cage facing the striped wall (see Figure 5A). For the training phase, mice were indi-

vidually placed in the center of the cage and allowed to freely explore for three, 3-minute training sessions separated by 3-minute rest

periods in their home cages. For the test trial, which took place 3 minutes after the last training trial, one of the two flasks was dis-

placed to varying distances (one, two, three, or four flask lengths) from its original location before the mice were placed back in the

cage for the single 3-minute testing session. During each trial, the amount of time spent exploring each of the two Erlenmeyer flasks

was measured by an experimenter blinded to genotype/treatment.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bias Elimination and Randomization
No specific method of randomization of mice was used, but mice were semirandomly assigned to experimental groups on the basis

of birth order after balancing for age, sex, and genotype. Experiments were performed and quantified by investigators who were

blinded to the genotype and treatment of the mice, and were unblinded once summary data was ready to be prepared.

Statistical Analysis
GraphPad Prism 6.0 was used for statistical analyses. For comparisons between two experimental groups, unpaired two-tailed

Student t tests were used. With respect to neurogenesis or neural stem cell markers, t tests were used to compare NTG and APP

mice at each age, as the experiments were designed and powered to assess the difference between genotypes at each individual

age. One-tailed unpaired Student t tests were usedwhen therewere a priori assumptionsmade about direction of change (Figure S3).

For comparisons between more than two experimental groups, a two-way ANOVA test (when there was normal sample distribution)

or a Kruskal–Wallis test (when normality could not be assumed) was used. When two-way ANOVA and Kruskal-Wallis tests were

statistically significant, multiple-comparison post hoc analyses were performed to compare the differences between individual

groups. A p value of less than 0.05 was considered statistically significant. The statistical tests, n (number of animals), and p values

for each dataset are provided in the figure legend that accompanies the data. Detailed results of all statistical analyses are listed in

Table S2.
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Figure S1. The effects of seizures on neuroblasts and amplifying neural progenitors (ANPs). Related to Figures 1 and 2.
(A) Optical density measurement of DCX at 1 month of age (n = 9-12 mice per genotype), and number of DCX+ neuroblasts at 
2 (n = 6  mice per genotype), 3 (n = 8 mice per genotype), 7 (n = 9-10 mice per genotype), and 14 (n = 11-12 mice per geno-
type) months of age, normalized to NTG at each time point. Note that the 1 month time point is the same data as presented in 
Fig 1D.
(B) Numbers of Nestin+ ANPs were quantified in NTG and APP at 1 (n = 10-11 mice per genotype), 2 (n = 14 mice per 
genotype), 3 (n = 8 mice per genotype), 6 (n = 9-10 mice per genotype), and 14 (n = 11-12 mice per genotype) months of age. 
Cell counts are presented here as normalized to the average of 1-month-old NTG mice.
(C) Number of BrdU+ Nestin+ ANPs were quantified in NTG and APP mice at 1 (n = 9-10 mice per genotype), 2 (n = 8 mice 
per genotype), 3 (n = 8 mice per genotype), 6 (n = 8 mice per genotype), and 14 (n = 11-12 mice per genotype) months of age. 
Cell counts are presented here as normalized to the average of 1-month-old NTG mice.
*p < 0.05; **p < 0.01, ***p < 0.001, two-tailed unpaired Student’s t-test comparing means between NTG and APP mice at 
each age (A-C).
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Figure S2. Doublecortin-expressing cells in the dentate gyrus of NTG and APP mice also express PSA-NCAM and β3-tubulin. 
Related to Figure 1.
Coronal sections from mice at 2 months of age were immunostained.
(A) Doublecortin (green, left panels) is expressed in cell bodies and in dendritic processes, as is PSA-NCAM (red, middle panels). 
Overlaid images (right panels) reveal coexpression of doublecortin and PSA-NCAM (yellow) in neurons in the subgranular zone of 
NTG mice (top panels) and APP mice (bottom panels). Scale bar, 200µm.
(B) Inset of are indicated in overlaid images in A. Note that the increase in doublecortin- and PSA-NCAM-expressing neurons is 
evident at this age, consistent with findings in Figure 1 of the main paper. Scale bar, 50µm.
(C) Doublecortin-expressing cells (green, top panel) also express β3-tubulin, a marker of neuronal cells (red, middle panel; see 
overlay, bottom panel). Scale bar, 50µm.
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Figure S3. The PSAPP and TG2576 lines of transgenic APP mice exhibit alterations in immature neurons and neural stem 
cells similar to J20 APP mice. Related to Figures 1 and 2.
Brain sections from PSAPP mice at 5 months of age (n = 9-11 mice per genotype) and 12 months of age (n = 11-12 mice per geno-
type), and from Tg2576 mice at 10 months of age (n = 11 mice per genotype) were  immunostained for doublecortin and nestin.
(A-B) Immunostaining of brain sections from PSAPP mice demonstrate increased number of DCX-expressing immature neurons at 
early disease stages (5 months of age, A) and decreased numbers at late disease stages (12 months of age, B) compared with 
age-matched controls. 
(C) Tg2576 mice at late disease stages (10 months of age) also showed decreased DCX-expressing newborn neurons. 
(D-E) PSAPP mice exhibit modest decreases in nestin-expressing neural stem cells at early disease stages (D) that further decrease at 
later disease stages (E). 
(F) Tg2576 mice at late disease stages also show decreased Nestin-expressing neural stem cells compared with NTG controls.
For statistical analyses, one-tailed unpaired Student’s t-tests were used since the hypothesis was that the direction of change in PSAPP 
and Tg2576 mice would mirror that observed in J20 mice in Figures 1 and 2, *p < 0.01, *** p < 0.001. Values indicate mean ± SEM.
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Figure S4. Newborn neurons in APP mice exhibit normal morphology, but show increased ectopic migration into the 
hilus compared to NTG mice. Related to Figure 1. 
(A) Morphology of DCX+ cells is not obviously different between NTG and APP mice (3 months of age). In contrast, 
pilocarpine-treated wild-type mice (270-280 mg/kg, IP, 6 weeks post status epilepticus) showed altered neuronal polarity 
(arrow) and migration (arrowhead) compared to saline-treated mice. Scale bar, 50µm. 
(B) APP mice show increased number of ectopic Prox1+ granule neurons in the hilus compared to NTG mice (6 months of 
age, n = 7-10 mice per genotype). Scale bar, 250µm, inset scale bar, 50µm. 
**p < 0.01, two-tailed unpaired Student’s t-test. Values indicate mean ± SEM.
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Figure S5. APP mice exhibit altered NSC division at different 
ages. Related to Figure 2. 
(A-E) Neural stem cell (NSC) division is represented as total 
number of BrdU+ Nestin+ dividing NSCs (left), and as a percent-
age of dividing NSCs/total NSCs (right) in NTG and APP mice at 1 
(A, n = 9-10 mice per genotype), 2 (B, n = 8 mice per genotype), 3 
(C, n = 8 mice per genotype), 6 (D, n = 8 mice per genotype), and 
14 (E, n = 11-12 mice per genotype) months of age.
*p < 0.05; **p < 0.01, ***p < 0.001, ns, not significant, two-tailed 
unpaired Student’s t-test. Values indicate mean ± SEM.
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Figure S6. Kainic acid seizures induce NSC division in NTG and APP mice. Related to Figures 2 and 3.
(A) Representative images of Nestin/BrdU staining in 8-month-old NTG and APP mice that received 
intraperitoneal injection of saline or kainic acid (KA, 15 mg/kg). Scale bar, 100µm. 
(B) Number of BrdU+ Nestin+ NSCs in the SGZ of NTG and APP mice injected with saline or kainic acid 
(n = 7-13 mice per genotype and treatment). Kruskal-Wallis test revealed significant differences between 
groups (p < 0.0001).
(C) Number of BrdU+ Nestin+ ANPs in the SGZ of  NTG and APP mice injected with either saline or kainic 
acid (n = 7-13 mice per genotype and treatment). Kruskal-Wallis test revealed significant differences between 
groups (p < 0.0001).
*p < 0.05, Dunn post-hoc test. Values indicate mean ± SEM.
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Figure S7. Treatment of APP mice with the antiepileptic drug levetiracetam normalizes ΔFosB,  a seizure-induced 
transcription factor, and epileptic spikes. Related to Figures 4 and 5. 
(A) Mice in Figure 6 were injected with levetiracetam (LEV, 75 mg/kg, IP), or an equivalent volume of saline, 3 times a day 
for 2 weeks (n = 9-11 mice per genotype/treatment), and then sacrificed and brains were processed for immunostaining. Δ
FosB immunoreactivity (IR) is increased in saline-treated APP mice compared with saline-treated NTG mice, but is normal-
ized in LEV-treated APP mice compared to LEV-treated NTG mice. Two-way ANOVA revealed a significant effect of LEV 
treatment (p < 0.01), genotype (p < 0.0001), and an interaction between treatment and genotype (p < 0.01). 
(B) Mice in Figure 7 were implanted with Alzet micro-osmotic pumps designed to release either saline or 75 mg/kg/day of 
LEV for 28 days (n = 6-8 mice per genotype/treatment). LEV delivered via micro-osmotic pumps similarly reduced ΔFosB IR 
in APP mice.  Two-way ANOVA revealed a significant effect of genotype (p < 0.05).
*p < 0.05, ****p< 0.0001, ns, not significant, Tukey post-hoc tests (A-B).
(C-D) Mice received implantation of chronic EEG electrodes, allowed to recover, and baseline EEG recordings were 
performed. Mice were then implanted with Alzet micro-osmotic pumps designed to release 75 mg/kg/day of LEV for 28 days. 
(C) Number of spikes exhibited by individual mice during baseline recordings, and then at 3, 8, 16, and 28 days of LEV 
treatment. 
(D) Data in panel C was normalized to baseline spike frequency (blue circles), and plotted with data from mice that received 
saline-filled micro-osmotic pumps as controls (gray circles). Two-way repeated measures ANOVA revealed a significant 
effect of LEV treatment (p < 0.05), and an interaction between treatment and time (p < 0.01).
Holm-Sidak post-hoc tests indicated significant differences between saline and LEV groups at 3, 8, and 16 days of treatment.
*p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant. Values indicate mean ± SEM.
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Figure S8. NSCs division is similar in dissociated neurospheres from NTG and APP mice. Related to Figure 4.
(A) Representative images of neurospheres grown in vitro from hippocampal NSCs (left) that can be dissociated, plated, 
and immunostained for nestin and DAPI to confirm their identity (right). 
(B) Example images of BrdU+ NSCs generated from dissociated neurospheres originating from mice at postnatal day 3 
(P3, left), with quantification (right; n = 3 mice per genotype). 
(C) Example images of BrdU+ dividing NSCs generated from dissociated neurospheres originating from mice at postnatal 
day 30 (P30, left), with quantification (right; n = 4 mice per genotype). 
Scale bars: (A) left, 100µm; right, 50µm. (B, C) 50µm. Two-tailed unpaired Student’s t test. Values indicate mean ± SEM.



Figure S9. Spatial discrimination index of NTG and APP mice. Related to Figure 5. 
(A-B) Additional analyses of data presented in Figure 5B.
(A) Comparison of spatial discrimination performance at position 2 in untreated NTG and APP mice. 
Two-way ANOVA revealed a significant effect of test phase (p < 0.05). *p < 0.05, Holm-Sidak post-hoc test. 
For simplicity, post-hoc comparisons for only the “Test” phase are indicated.
(B) Discrimination index was calculated as the difference between the percent of time spent with displaced 
object during the testing and training phases of the spatial discrimination task in untreated NTG and APP 
mice. Two-way ANOVA revealed a significant effect of object position (p < 0.0001). p = 0.09, Fisher’s LSD 
post-hoc test. 
(C-D) Additional analyses of data presented in Figure 5C.
(C) Discrimination index at position 2 in saline- or LEV-treated NTG and APP mice.   Two-way ANOVA 
revealed a significant effect of LEV treatment (p < 0.05) and an interaction between genotype and treatment 
(p < 0.001). *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant, Newman-Keuls post-hoc test. 
(D) Comparison of spatial discrimination performance at position 2 in saline- or LEV-treated NTG and APP 
mice. Two-way ANOVA revealed a significant effect of LEV treatment (p < 0.001), test phase (p < 0.0001), 
and an interaction between treatment and test phase (p < 0.001). **p < 0.01, ***p < 0.001, ns, not significant, 
Holm-Sidak post-hoc test. For simplicity, post-hoc comparisons for only the “Test” phase are indicated.
Values indicate mean ± SEM.
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Table S1. Raw values for normalized data in Figures 1-S8. Related to Figures 1-S8 and STAR 
Methods 
Figure Parameter Groups Avg ± SEM Additional cohort Unit 
1g DCX+ staining 

 
NTG (1 mo) 
APP (1 mo) 

148.39 ± 12.24 
137.93 ± 24.23 

 Sum of % threshold area covered 
by DCX expression in the granule 
cell layer in every 10th section 
through the rostral-caudal extent 
of hippocampus. 

DCX+ immature 
neurons 

NTG (2 mo) 
APP (2 mo) 
NTG (3 mo) 
APP (3 mo) 
NTG (7 mo) 
APP (7 mo) 
NTG (14 mo) 
APP (14 mo) 

665.83 ± 45.79 
903.50 ± 95.33 
515.63 ± 17.18 
394.63 ± 39.91 
167.40 ± 14.57 
54.67 ± 15.06 
50.58 ± 3.19 
19.36 ± 7.33 

 Cell numbers 

2c Nestin+ NSCs NTG (1 mo) 
APP (1 mo) 
NTG (2 mo) 
APP (2 mo) 
NTG (3 mo) 
APP (3 mo) 
NTG (6 mo) 
APP (6 mo) 
NTG (14 mo) 
APP (14 mo) 

977.36 ± 38.86 
910.67 ± 52.63 
373.00 ± 28.36 
144.83 ± 23.20 
217.50 ± 9.65 
124.63 ± 28.97 
172.40 ± 13.72 
85.22 ± 15.12 
72.83 ± 3.91 
9.45 ± 4.39 

 
 
592.50 ± 49.18 
411.88 ±49.26 

Cell numbers 

2f Nestin+ BrdU+ NSCs NTG (1 mo) 
APP (1 mo) 
NTG (2 mo) 
APP (2 mo) 
NTG (3 mo) 
APP (3 mo) 
NTG (6 mo) 
APP (6 mo) 
NTG (14 mo) 
APP (14 mo) 

45.11 ± 3.32 
58.10 ± 4.30 
43.63 ± 2.76 
45.25 ± 4.17 
17.38 ± 1.59 
11.50 ± 1.55 
9.57 ± 1.13 
4.88 ± 1.33 
1.33 ± 0.31 
1.00 ± 0.27 

 Cell numbers 

2i Nestin+ Ki67+ NSCs NTG 
APP 

50.25 ± 4.26 
57.13 ± 7.21 

 Cell numbers 

3b, c BrdU+ EdU+ Nestin+ 
NSCs 

NTG (3 wk) 
APP (3 wk) 
NTG (2 mo) 
APP (2 mo) 
NTG (6 mo) 
APP (6 mo) 
NTG (12 mo) 
APP (12 mo) 

39.83 ± 5.21 
76.67 ± 13.70 
18.25 ± 2.10 
13.33 ± 2.82 
3.43 ± 0.84 
1.25 ± 0.49 
3.33 ± 0.67 
0.40 ± 0.24 

 Cell numbers 

4a Ki67+ Nestin+ NSCs/ 
Nestin+ NSCs 

NTG sal 
APP sal 
NTG lev 
APP lev 

18.53 ± 2.15 
30.68 ± 5.97 
17.96 ± 2.04 
26.04 ± 3.91	  

7.75 ± 1.25 
18.22 ± 4.09 
5.06 ± 1.25 
7.83 ± 3.10 

% Cell numbers 

4b Nestin+ NSCs NTG sal 
APP sal 
NTG lev 
APP lev 

484.50 ± 60.04 
225.75 ± 45.75 
494.60 ± 55.44 
365.00 ± 57.04 

186.2 ± 17.93 
134 ± 18.87 
173.33 ± 7.80 
184.80 ± 25.70 

Cell numbers 

4c DCX+ staining NTG sal 
APP sal 
NTG lev 
APP lev 

198.73 ± 7.23 
259.61 ± 25.71 
157.16 ± 22.38 
132.59 ± 46.75 

110.03 ± 8.28 
181.82 ± 32.31 
83.13 ± 4.31 
116.29 ± 24.65 

Sum of % threshold area covered 
by DCX expression in the granule 
cell layer in every 10th section 
through the rostral-caudal extent 
of hippocampus. 

S1a DCX+ staining 
 

NTG (1 mo) 
APP (1 mo)  

148.39 ± 12.24 
137.93 ± 24.23 

 Sum of % threshold area covered 
by DCX expression in the granule 



 cell layer in every 10th section 
through the rostral-caudal extent 
of hippocampus. 

DCX+ neuroblasts NTG (2 mo) 
APP (2 mo) 
NTG (3 mo) 
APP (3 mo) 
NTG (7 mo) 
APP (7 mo) 
NTG (14 mo) 
APP (14 mo) 

992.50 ± 28.05 
1058 ± 102.75 
640.38 ± 14.36 
402.25 ± 11.91 
506.90 ± 53.50 
199.56 ± 37.43 
56.58 ± 4.00 
25.55 ± 4.99 

 Cell numbers 

S1b Nestin+ ANPs NTG (1 mo) 
APP (1 mo) 
NTG (2 mo) 
APP (2 mo) 
NTG (3 mo) 
APP (3 mo) 
NTG (6 mo) 
APP (6 mo) 
NTG (14 mo) 
APP (14 mo) 

853.36 ± 43.08 
836.44 ± 57.67 
567.00 ± 38.86 
427.17 ± 21.51 
225.75 ± 27.21 
145.5 ± 22.09 
208.40 ± 12.05 
152.89 ± 12.17 
68.67 ± 6.12 
23.64 ± 4.68 

 
 
463.63 ± 34.93 
361.75 ± 44.07 
 

Cell numbers 

S1c Nestin+ BrdU+ ANPs NTG (1 mo) 
APP (1 mo) 
NTG (2 mo) 
APP (2 mo) 
NTG (3 mo) 
APP (3 mo) 
NTG (6 mo) 
APP (6 mo) 
NTG (14 mo) 
APP (14 mo) 

137.67 ± 8.42 
157.5 ± 10.29 
99.50 ± 6.58 
103 ± 11.31 
59.50 ± 4.19 
42.00 ± 4.09 
42.71 ± 5.69 
26.25 ± 4.58 
9.58 ± 1.78 
4.64 ± 1.08 

 Cell numbers 

S3a DCX+ immature 
neurons 

NTG 
PSAPP 

163.91 ± 15.82 
241.89 ± 40.51 

 Cell numbers 

S3b DCX+ immature 
neurons 

NTG 
PSAPP 

32.45 ± 6.56 
16.33 ± 4.13 

 Cell numbers 

S3c DCX+ immature 
neurons 

NTG 
Tg2576 

53.09 ± 6.14 
30.80 ± 6.82 

 Cell numbers 

S3d Nestin+ NSCs NTG 
PSAPP 

159.09 ± 11.83 
116.22 ± 25.10 

 Cell numbers 

S3e Nestin+ NSCs NTG 
PSAPP 

71 ± 12.06 
41.75 ± 6.10 

 Cell numbers 

S3f Nestin+ NSCs NTG 
Tg2576 

103.50 ± 6.95 
29.78 ± 3.79 

 Cell numbers 

S4c Prox1+ hilar granule 
cells 

NTG 
APP 

83.50 ± 7.22 
165.86 ± 29.57 

 Cell numbers 

S7a ΔFosB IR NTG sal 
APP sal 
NTG LEV 
APP LEV 

1.109 ± 0.007 
1.426 ± 0.088 
1.102 ± 0.004 
1.240 ± 0.059 

1.075 ± 0.004 
1.366 ± 0.066 
1.072 ± 0.003 
1.102 ± 0.020 

Arbitrary units (intensity) 

S7b ΔFosB IR NTG sal 
APP sal 
NTG LEV 
APP LEV 

1.682 ± 0.022 
4.881 ± 1.448 
1.434 ± 0.045 
2.860 ± 0.549 

1.047 ± 0.003 
1.186 ± 0.107 
1.051 ± 0.005 
1.187 ± 0.061 

Arbitrary units (intensity) 

S8b BrdU+ cells NTG 
APP 

41.60 ± 2.45 
44.12 ± 3.66 

 Cell numbers 

S8c BrdU+ cells NTG 
APP 

52.94 ± 2.84 
49.34 ± 3.66 

 Cell numbers 

 



Table S2. Statistical values for comparisons in Figures 1-S9. Related to Figures 1-S9 and 
STAR Methods. 
Figure Parameter Groups Test used Values P value 
1d Spikes per hour NTG, APP (1 mo) 

NTG, APP (2 mo) 
NTG, APP (4-6 mo) 

Student t-test, 2-tailed t6 = 2.514 
t4 = 4.209 
t6 = 3.879 

P = 0.0456 
P = 0.0136 
P = 0.0082 

1g DCX+ staining NTG, APP (1 mo) Student t-test, 2-tailed t19 = 0.4153 P = 0.6826 
DCX+ immature 
neurons 

NTG, APP (2 mo) 
NTG, APP (3 mo) 
NTG, APP (7 mo) 
NTG, APP (14 mo) 

Student t-test, 2-tailed t10 = 2.247 
t14 = 2.785 
t17 = 5.374 
t21 = 4.024 

P = 0.0484 
P = 0.0146 
P < 0.0001 
P = 0.0006 

2c Nestin+ NSCs NTG, APP (1 mo) 
NTG, APP (2 mo) 
NTG, APP (3 mo) 
NTG, APP (7 mo) 
NTG, APP (14 mo) 

Student t-test, 2-tailed t18 = 1.011 
t26 = 5.002 
t14 = 3.041 
t17 = 3.399 
t21 = 10.81 

P = 0.3254 
P < 0.0001 
P = 0.0088 
P = 0.0034 
P < 0.0001  

2f Nestin+ BrdU+ NSCs NTG, APP (1 mo) 
NTG, APP (2 mo) 
NTG, APP (3 mo) 
NTG, APP (7 mo) 
NTG, APP (14 mo) 

Student t-test, 2-tailed t17 = 2.353 
t14 = 0.3248 
t14 = 2.647 
t13 = 2.649 
t21 = 0.8050 

P = 0.0309 
P = 0.7501 
P = 0.0191 
P = 0.0201 
P = 0.4299  

BrdU+ Nestin+ NSCs/ 
Nestin+ NSCs 

NTG, APP (2 mo, inset) Student t-test, 2-tailed t14 = 2.925 P = 0.0111 

2i Nestin+ Ki67+ NSCs NTG, APP Student t-test, 2-tailed t14 = 0.8213 P = 0.4253 
Ki67+ Nestin+ NSCs/ 
Nestin+ NSCs 

NTG, APP Student t-test, 2-tailed	   t14 = 2.141 P = 0.0504 

3b, c BrdU+ EdU+ Nestin+ 
NSCs 

NTG, APP (3 wk) 
NTG, APP (2 mo) 
NTG, APP (6 mo) 
NTG, APP (12 mo) 

Student t-test, 2-tailed t10 = 2.514 
t12 = 1.429 
t13 = 2.309 
t12 = 3.162 

P = 0.0307 
P = 0.1784 
P = 0.0380 
P = 0.0082 

4a Ki67+ Nestin+ NSCs/ 
Nestin+ NSCs 

NTG, APP (saline) 
NTG, APP (LEV) 

2-way ANOVA Genotype, F1,35 = 8.785 
Treatment, F1,35 = 6.929 
Interaction, F1,35 = 3.095 

P = 0.0054 
P = 0.0125  
P = 0.0873 

NTG sal v NTG LEV 
NTG sal v APP sal 
NTG sal v APP LEV 
NTG LEV v APP sal 
NTG LEV v APP LEV 
APP sal v APP LEV 

Holm-Sidak post-hoc t35 = 0.6278 
t35 = 3.397 
t35 = 0.2205 
t35 = 4.242 
t35 = 0.8379 
t35 = 3.055 

P = 0.7923 
P = 0.0085 
P = 0.8267 
P = 0.0009 
P = 0.7923 
P = 0.0170 

4b Nestin+ NSCs NTG, APP (saline) 
NTG, APP (LEV) 

2-way ANOVA Genotype, F1,35 = 7.003 
Treatment, F1,35 = 2.925 
Interaction, F1,35 = 4.273 

P = 0.0121 
P = 0.0961 
P = 0.0462 

NTG sal v NTG LEV 
NTG sal v APP sal 
NTG sal v APP LEV 
NTG LEV v APP sal 
NTG LEV v APP LEV 
APP sal v APP LEV 

Holm-Sidak post-hoc t35 = 0.2567 
t35 = 3.390 
t35 = 0.6227 
t35 = 3.303 
t35 = 0.4029 
t35 = 2.628 

P = 0.9036 
P = 0.0104 
P = 0.9011 
P = 0.0110 
P = 0.9036 
P = 0.0497 

4c DCX+ staining NTG, APP (saline) 
NTG, APP (LEV) 

2-way ANOVA Genotype, F1,35 = 2.658 
Treatment, F1,35 = 19.77 
Interaction, F1,35 = 6.738 

P = 0.1120 
P < 0.0001 
P = 0.0137 

NTG sal v NTG LEV 
NTG sal v APP sal 
NTG sal v APP LEV 
NTG LEV v APP sal 
NTG LEV v APP LEV 
APP sal v APP LEV 

Holm-Sidak post-hoc t35 = 1.331 
t35 = 3.039 
t35 = 1.873 
t35 = 4.606 
t35 = 0.6716 
t35 = 4.899 

P = 0.3470 
P = 0.0177 
P = 0.1942 
P = 0.0003 
P = 0.5063 
P = 0.0001 

5b Time spent with DO NTG (P1, P2, P3, P4) 2-way RM ANOVA Position, F3,26 = 0.7074 
Test phase, F1,26 = 38.39 
Interaction, F3,26 = 2.992 

P=0.5563 
P<0.0001 
P=0.0492 

NTG P1 train v test Holm-Sidak post-hoc t26 = 0.7706 P = 0.4479 



NTG P2 train v test  
NTG P3 train v test 
NTG P4 train v test 

t26 = 3.049 
t26 = 3.990 
t26 = 4.436 

P = 0.0104 
P = 0.0014 
P = 0.0006 

APP (P1, P2, P3, P4) 2-way RM ANOVA Position, F3,23 = 7.271 
Test phase, F1,23 = 21.95 
Interaction, F3,23 = 7.783 

P = 0.0013 
P = 0.0001 
P = 0.0009 

APP P1 train v test 
APP P2 train v test  
APP P3 train v test 
APP P4 train v test 

Holm-Sidak post-hoc t23 = 0.6623 
t23 = 00.5999 
t23 = 04.730 
t23 = 04.533 

P = 0.7641 
P = 0.7641 
P = 0.0004 
P = 0.0004 

5c Time spent with DO NTG, APP (saline) 
NTG, APP (LEV) 

2-way RM ANOVA Treatment, F3,26 = 8.161 
Test phase, F1,26 = 59.59 
Interaction, F3,26 = 8.261 

P = 0.0005 
P < 0.0001 
P = 0.0005 

  NTG sal train v test 
NTG LEV train v test 
APP sal train v test 
APP LEV train v test 

Holm-Sidak post-hoc t26 = 5.593 
t26 = 3.250 
t26 = 0.02989 
t26 = 7.192 

P < 0.0001 
P = 0.0064 
P = 0.9764 
P < 0.0001 

S1a DCX+ staining NTG, APP (1 mo) Student t-test, 2-tailed t19 = 0.4153 
 

P = 0.6826 

DCX+ neuroblasts NTG, APP (2 mo) 
NTG, APP (3 mo) 
NTG, APP (7 mo) 
NTG, APP (14 mo) 

Student t-test, 2-tailed t10 = 0.6150 
t14 = 12.76 
t17 = 4.606 
t21 = 4.892 

P = 0.5523 
P < 0.0001 
P = 0.0003 
P < 0.0001 

S1b Nestin+ ANPs NTG, APP (1 mo) 
NTG, APP (2 mo) 
NTG, APP (3 mo) 
NTG, APP (7 mo) 
NTG, APP (14 mo) 

Student t-test, 2-tailed t18 = 0.2284 
t26 = 3.104 
t14 = 2.290 
t17 = 3.233 
t21 = 5.764 

P = 0.8219 
P = 0.0046 
P = 0.0381 
P = 0.0049 
P < 0.0001 

S1c Nestin+ BrdU+ ANPs NTG, APP (1 mo) 
NTG, APP (2 mo) 
NTG, APP (3 mo) 
NTG, APP (7 mo) 
NTG, APP (14 mo) 

Student t-test, 2-tailed t17 = 1.471 
t14 = 0.2674 
t14 = 2.987 
t13 = 2.278 
t21 = 2.321 

P = 0.1596 
P = 0.7931 
P = 0.0098 
P = 0.0403 
P = 0.0304 

S3a DCX+ immature 
neurons 

NTG, PSAPP Student t-test, 1-tailed t18 = 2.022 P = 0.0292 

S3b DCX+ immature 
neurons 

NTG, PSAPP Student t-test, 1-tailed t20 = 1.921 P = 0.0346 

S3c DCX+ immature 
neurons 

NTG, Tg2576 Student t-test, 1-tailed t19 = 2.382 P = 0.0139 

S3d Nestin+ NSCs NTG, PSAPP Student t-test, 1-tailed t18 = 1.642 P = 0.0590 
S3e Nestin+ NSCs NTG, PSAPP Student t-test, 1-tailed t21 = 2.221 P = 0.0187 
S3f Nestin+ NSCs NTG, Tg2576 Student t-test, 1-tailed t18 = 8.863 P < 0.0001 
S4c Prox1+ hilar granule 

cells 
NTG, APP Student t-test, 2-tailed t15 = 3.181 P = 0.0062 

S5a Nestin+ BrdU+ NSCs NTG, APP Student t-test, 2-tailed t17 = 2.353 P = 0.0309 
BrdU+ Nestin+ NSCs/ 
Nestin+ NSCs 

NTG, APP Student t-test, 2-tailed t17 = 4.250 P = 0.0005 

S5b Nestin+ BrdU+ NSCs NTG, APP Student t-test, 2-tailed t14 = 0.3248 P = 0.7501 
BrdU+ Nestin+ NSCs/ 
Nestin+ NSCs 

NTG, APP Student t-test, 2-tailed t14 = 2.925 P = 0.0111 

S5c Nestin+ BrdU+ NSCs NTG, APP Student t-test, 2-tailed t14 = 2.647 P = 0.0191 
BrdU+ Nestin+ NSCs/ 
Nestin+ NSCs 

NTG, APP Student t-test, 2-tailed t14 = 1.766 P = 0.0991 

S5d Nestin+ BrdU+ NSCs NTG, APP Student t-test, 2-tailed t13 = 2.649 P = 0.0201 
BrdU+ Nestin+ NSCs/ 
Nestin+ NSCs 

NTG, APP Student t-test, 2-tailed t13 = 0.8650 P = 0.4027 

S5e Nestin+ BrdU+ NSCs NTG, APP Student t-test, 2-tailed t21 = 0.8050 P = 0.4299 
BrdU+ Nestin+ NSCs/ 
Nestin+ NSCs 

NTG, APP Student t-test, 2-tailed t21 = 3.049 P = 0.0061 

S6b BrdU+ Nestin+ NSCs/ 
Nestin+ NSCs 

NTG, APP (saline) 
NTG, APP (KA) 

Kruskal-Wallis test KW statistic = 26.70 P < 0.0001 



NTG saline v KA 
APP saline v KA 

Dunn post-hoc Z = 2.795 
Z = 2.391 

P = 0.0104 
P = 0.0336 

S6c BrdU+ Nestin+ ANPs/ 
Nestin+ ANPs 

NTG, APP (saline) 
NTG, APP (KA) 

Kruskal-Wallis test KW statistic = 27.86 P < 0.0001 

NTG saline v KA 
APP saline v KA 

Dunn post-hoc Z = 2.651 
Z = 2.375 

P = 0.0161 
P = 0.0351 

S7a ΔFosB IR NTG, APP (saline) 
NTG, APP (LEV) 

2-way ANOVA Genotype, F1,35 = 35.61 
Treatment, F1,35 = 10.49 
Interaction, F1, 35 = 9.472 

P < 0.0001 
P = 0.0026 
P = 0.0040 

NTG sal v APP sal 
NTG LEV v APP LEV 

Tukey post-hoc  P < 0.0001 
P = 0.2037 

S7b ΔFosB IR NTG, APP (saline) 
NTG, APP (LEV) 

2-way ANOVA Genotype, F1,26 = 9.096 
Treatment, F1,26 = 2.391 
Interaction, F1,26 = 1.729 

P = 0.0057 
P = 0.1341 
P = 0.2001 

NTG sal v APP sal 
NTG LEV v APP LEV 

Tukey post-hoc  P = 0.0316 
P = 0.6005 

S7d Spike per hour Sal (pre, 3d, 8d, 16d) 
LEV (pre, 3d, 8d, 16d) 

2-way ANOVA Time, F3,12 = 18.51 
Treatment, F1,4 = 18.58 
Interaction, F3,12 = 6.774 

P < 0.0001 
P = 0.0125 
P = 0.0063 

Sal (pre) v LEV (pre) 
Sal (3d) v LEV (3d) 
Sal (8d) v LEV (8d) 
Sal (16d) v LEV (16d) 

Holm-Sidak post-hoc t16 = 0.000 
t16 = 2.744 
t16 = 5.377 
t16 = 3.456 

P > 0.9999 
P = 0.0286 
P = 0.0002 
P = 0.0097 

S8b BrdU+ cells NTG, APP Student t-test, 2-tailed t4 = 0.5571 P = 0.6072 
S8c BrdU+ cells NTG, APP Student t-test, 2-tailed t6 = 0.7937 P = 0.4576 
S9a Discrimination index NTG (P1, P2, P3, P4) 

APP (P1, P2, P3, P4) 
2-way ANOVA Genotype, F1,49 = 1.496 

Position, F3,49 = 9.605 
Interaction, F3,49 = 0.8249 

P = 0.2272 
P < 0.0001 
P = 0.4865 

NTG v APP (P1) 
NTG v APP (P2) 
NTG v APP (P3) 
NTG v APP (P4) 

Fisher’s LSD post-hoc t49 = 1.008 
t49 = 1.757 
t49 = 0.2310 
t49 = 0.01285 

P = 0.3184 
P = 0.0851 
P = 0.8183 
P = 0.9898 

S9b Time spent with DO NTG, APP 2-way ANOVA Genotype, F1,13 = 3.357  
Test phase, F1,13 = 5.206 
Interaction, F1,13 = 2.399 

P = 0.0899 
P = 0.0400 
P = 0.1454 

NTG v APP (train) 
NTG v APP (test) 

Holm-Sidak post-hoc t26 =  0.1697 
t26 = 2.388 

P = 0.8665 
P = 0.0484 

S9c Discrimination index NTG, APP (saline) 
NTG, APP (LEV) 

2-way ANOVA Genotype, F1, 26 = 0.6029 
Treatment, F1, 26 = 5.350 
Interaction, F1, 26 = 20.83 

P = 0.4445 
P = 0.0289 
P = 0.0001 

NTG sal v NTG LEV 
NTG sal v APP sal 
NTG sal v APP LEV 
NTG LEV v APP sal 
NTG LEV v APP LEV 
APP sal v APP LEV 

Newman-Keuls  
post-hoc 

 ns 
P < 0.01 
ns 
P < 0.05 
P < 0.05 
P < 0.001 

S9d Time spent with DO NTG, APP (saline) 
NTG, APP (LEV) 

2-way RM ANOVA Treatment, F3,26 = 8.161 
Test phase, F1,26 = 59.59 
Interaction, F3,26 = 8.261 

P = 0.0005 
P < 0.0001 
P = 0.0005 

NTG sal v NTG LEV (train) 
NTG sal v APP sal (train) 
NTG sal v APP LEV (train) 
NTG LEV v APP sal (train) 
NTG LEV v APP LEV (train) 
APP sal v APP LEV (train) 
NTG sal v NTG LEV (test) 
NTG sal v APP sal (test) 
NTG sal v APP LEV (test) 
NTG LEV v APP sal (test) 
NTG LEV v APP LEV (test) 
APP sal v APP LEV (test) 

Newman-Keuls  
post-hoc 

 P > 0.9999 
P > 0.9999 
P > 0.9999 
P > 0.9999 
P > 0.9999 
P > 0.9999 
P = 0.0600 
P < 0.0001 
P = 0.1300 
P = 0.0082 
P = 00017 
P < 0.0001 
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